线程池

为什么要使用线程池?

  1. 创建/销毁线程消耗系统资源,线程池可以复用线程
  2. 控制并发数量。并发过多,资源可能耗尽,造成服务崩溃
  3. 对线程统一管理

构建方法

  • corePoolSize:核心线程数
  • maximumPoolSize:最大线程数
  • keepAliveTime :非核心线程数闲置时长
  • TimeUnit unit: keepAliveTime 时长单位
  • BlockingQueue<Runnable> workQueue: 阻塞队列,维护 等待 执行的Runnable
  • ThreadFactory threadFactory:创建线程的工厂,统一在创建线程是设置一些参数,如是否为守护线程,线程名称等。
  • RejectedExecutionHandler handler:拒绝处理策略,线程数量大于最大线程数阻塞队列长度的拒绝处理策略。
    • AbortPolicy:默认策略,丢弃任务抛出 RejectedExecutionException
    • DiscardPolicy: 丢弃任务,不抛出异常
    • DiscardOldestPolicy: 丢弃头部任务(最旧的任务),然后尝试重新执行
    • CallerRunsPolicy: 由调用线程处理

ThreadPoolExecutor 状态

ThreadPoolExecutor 中控制变量叫做 ctl,它是一个 AtomicInter 类型变量。

控制变量由两部分组成

  • runState 高3位,线程状态
  • workerCount 线程数量,低29位

线程池有自己的状态,使用 int 的高3位bit表示。

线程池容量为 2^29 - 1,大概5亿多。

private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));
private static final int COUNT_BITS = Integer.SIZE - 3;
private static final int CAPACITY   = (1 << COUNT_BITS) - 1;
// runState is stored in the high-order bits
// runState is stored in the high-order bits
// 接收新任务并且处理任务队列 
private static final int RUNNING    = -1 << COUNT_BITS;
// 不接受新任务 处理任务队列
private static final int SHUTDOWN   =  0 << COUNT_BITS;
// 不接收新任务,不处理任务队列,中断运行的任务
private static final int STOP       =  1 << COUNT_BITS;
// 所有任务结束,workCount = 0, 准备运行 terminated() hook
private static final int TIDYING    =  2 << COUNT_BITS;
//terminated() 运行完成
private static final int TERMINATED =  3 << COUNT_BITS;
  • 线程池创建后 处于 RUNNING
  • 线程池状态 随着时间 只能单调增加
  • RUNNING -> SHUTDOWN,调用 shutdown()
  • (RUNNING or SHUTDOWN)-> STOP, 调用shutdownNow()
  • SHUTDOWN -> TIDYING ,queue and pool 同时为空
  • STOP -> TIDYING,pool 为空
  • TIDYING -> TERMINATED,terminated() hook method 执行完毕

任务处理流程

处理任务方法是 execute

  public void execute(Runnable command) {
        if (command == null)
            throw new NullPointerException();
        /*
         * Proceed in 3 steps:
         *
         * 1. If fewer than corePoolSize threads are running, try to
         * start a new thread with the given command as its first
         * task.  The call to addWorker atomically checks runState and
         * workerCount, and so prevents false alarms that would add
         * threads when it shouldn't, by returning false.
         *
         * 2. If a task can be successfully queued, then we still need
         * to double-check whether we should have added a thread
         * (because existing ones died since last checking) or that
         * the pool shut down since entry into this method. So we
         * recheck state and if necessary roll back the enqueuing if
         * stopped, or start a new thread if there are none.
         *
         * 3. If we cannot queue task, then we try to add a new
         * thread.  If it fails, we know we are shut down or saturated
         * and so reject the task.
         */
        int c = ctl.get();
          // 1.当前线程数小于corePoolSize,则调用addWorker创建核心线程执行任务
        if (workerCountOf(c) < corePoolSize) {
            if (addWorker(command, true))
                return;
            c = ctl.get();
        }
          // 2.如果不小于corePoolSize,则将任务添加到workQueue队列。
        if (isRunning(c) && workQueue.offer(command)) {
            int recheck = ctl.get();
                    // 2.1 如果isRunning返回false(状态检查),则remove这个任务,然后执行拒绝策略。
            if (! isRunning(recheck) && remove(command))
                reject(command);
                        // 2.2 线程池处于running状态,但是没有线程,则创建线程
            else if (workerCountOf(recheck) == 0)
                addWorker(null, false);
        }
          // 3.如果放入workQueue失败,则创建非核心线程执行任务,
    // 如果这时创建非核心线程失败(当前线程总数不小于maximumPoolSize时),就会执行拒绝策略。
        else if (!addWorker(command, false))
            reject(command);
    }
  • 为什么入队后要二次检查线程池的状态?

因为多线程环境下,线程池状态时刻发生变化。如果没有二次检查,线程池不是 RUNNING,那么 command 将不会执行。

总结一下

  1. 如果线程数 < corePoolSize,创建新的核心线程执行任务(需要全局锁)
  2. 如果线程数 >= corePoolSize,新任务进入任务队列等待, 空闲的核心线程会一次从队列获取任务(线程复用)
  3. 如果缓存队列满了,创建非核心线程执行任务(需要全局锁)
  4. 如果缓存队列满了,非核心线程达到 maximunPoolSize, 执行拒绝策略

线程复用原理

  • 线程池如何做到线程复用的?

ThreadPoolExecutor 创建线程时,会将线程包装成 Worker,并放到工作线程组中,然后这个 worker反复从阻塞队列获取任务执行。

我们来看 addWorker

{
        retry:
        for (;;) {
            int c = ctl.get();
            int rs = runStateOf(c);

            // Check if queue empty only if necessary.
            if (rs >= SHUTDOWN &&
                ! (rs == SHUTDOWN &&
                   firstTask == null &&
                   ! workQueue.isEmpty()))
                return false;

            for (;;) {
                int wc = workerCountOf(c);
                if (wc >= CAPACITY ||
                    wc >= (core ? corePoolSize : maximumPoolSize))
                    return false;
                if (compareAndIncrementWorkerCount(c))
                    break retry;
                c = ctl.get();  // Re-read ctl
                if (runStateOf(c) != rs)
                    continue retry;
                // else CAS failed due to workerCount change; retry inner loop
            }
        }

        boolean workerStarted = false;
        boolean workerAdded = false;
        Worker w = null;
        try {
            w = new Worker(firstTask);
            // 创建 Thread 对象 就是 work 本身
            final Thread t = w.thread;
            if (t != null) {
                // 线程池 全局锁
                final ReentrantLock mainLock = this.mainLock;
                mainLock.lock();
                try {
                    // Recheck while holding lock.
                    // Back out on ThreadFactory failure or if
                    // shut down before lock acquired.
                    int rs = runStateOf(ctl.get());

                    if (rs < SHUTDOWN ||
                        (rs == SHUTDOWN && firstTask == null)) {
                        if (t.isAlive()) // precheck that t is startable
                            throw new IllegalThreadStateException();
                        workers.add(w);
                        int s = workers.size();
                        if (s > largestPoolSize)
                            largestPoolSize = s;
                        workerAdded = true;
                    }
                } finally {
                    mainLock.unlock();
                }
                if (workerAdded) {
                    //启动线程
                    t.start();
                    workerStarted = true;
                }
            }
        } finally {
            if (! workerStarted)
                addWorkerFailed(w);
        }
        return workerStarted;
    }
private final class Worker extends AbstractQueuedSynchronizer
    implements Runnable {
    final Thread thread;

    /** Initial task to run.  Possibly null. */
    Runnable firstTask;

    Worker(Runnable firstTask) {
        setState(-1); // inhibit interrupts until runWorker
        this.firstTask = firstTask;
        // 线程工厂创建
        this.thread =            getThreadFactory().newThread(this);
    }

    public void run() {
        runWorker(this);
    }
}

Worker 实现了 Runnable 接口,构造方法中,创建了一个线程,线程任务就是自己.

addWorker中会调用 start方法启动 Worker.

我们来看一下 runWorker,它是个循环,重复从任务队列获取任务并执行

// Worker.runWorker方法源代码
final void runWorker(Worker w) {
    Thread wt = Thread.currentThread();
    Runnable task = w.firstTask;
    w.firstTask = null;
    // 1.线程启动之后,通过unlock方法释放锁
    w.unlock(); // allow interrupts
    boolean completedAbruptly = true;
    try {
        // 2.Worker执行firstTask或从workQueue中获取任务,如果getTask方法不返回null,循环不退出
        while (task != null || (task = getTask()) != null) {
            // 2.1进行加锁操作,保证thread不被其他线程中断(除非线程池被中断)
            w.lock();
            // If pool is stopping, ensure thread is interrupted;
            // if not, ensure thread is not interrupted.  This
            // requires a recheck in second case to deal with
            // shutdownNow race while clearing interrupt
            // 2.2检查线程池状态,倘若线程池处于中断状态,当前线程将中断。 
            if ((runStateAtLeast(ctl.get(), STOP) ||
                 (Thread.interrupted() &&
                  runStateAtLeast(ctl.get(), STOP))) &&
                !wt.isInterrupted())
                wt.interrupt();
            try {
                // 2.3执行beforeExecute 
                beforeExecute(wt, task);
                Throwable thrown = null;
                try {
                    // 2.4执行任务
                    task.run();
                } catch (RuntimeException x) {
                    thrown = x; throw x;
                } catch (Error x) {
                    thrown = x; throw x;
                } catch (Throwable x) {
                    thrown = x; throw new Error(x);
                } finally {
                    // 2.5执行afterExecute方法 
                    afterExecute(task, thrown);
                }
            } finally {
                task = null;
                w.completedTasks++;
                // 2.6解锁操作
                w.unlock();
            }
        }
        completedAbruptly = false;
    } finally {
        processWorkerExit(w, completedAbruptly);
    }
}

首先会去执行 firstTask,执行完成后,Worker并不会结束,他会不断的调用getTask方法从阻塞队列获取任务,然后调用 task.run, 从而达到了线程复用的目的。

getTask方法实现:

    private Runnable getTask() {
        boolean timedOut = false; // Did the last poll() time out?

        for (;;) {
            int c = ctl.get();
            int rs = runStateOf(c);

            // Check if queue empty only if necessary.
            if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {
                decrementWorkerCount();
                return null;
            }

            int wc = workerCountOf(c);

            // Are workers subject to culling?
            // allowCoreThreadTimeOut 默认false 表示核心线程 永不销毁
            // 如果为 ture 核心线程空闲 超时后 会被销毁
            boolean timed = allowCoreThreadTimeOut || wc > corePoolSize;
            if ((wc > maximumPoolSize || (timed && timedOut))
                && (wc > 1 || workQueue.isEmpty())) {
                if (compareAndDecrementWorkerCount(c))
                    return null;
                continue;
            }

            try {
                Runnable r = timed ?
                    workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :
                    workQueue.take();
                if (r != null)
                    return r;
                timedOut = true;
            } catch (InterruptedException retry) {
                timedOut = false;
            }
        }
    }

默认情况下,核心线程会卡在 workQueue.take方法,不会占用CPU资源(如果 allowCoreThreadTimeOut 为 true,会调用 poll 方法)

非核心线程数会 workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) ,如果超时还没有拿到任务,下一次循环

常见线程池

Executors 提供了静态方法创建线程池。

  • newCachedThreadPool

    • 核心线程数为0,线程池最大数量为 Integer.MAX_VALUE,线程回收时间为60秒。

    当有很多短时间的任务时,CacheThreadPool 线程复用率高。

  • newFixedThreadPool

    • 核心线程数=最大线程数,只会创建核心线程
    • 使用LinkedBlockingQueue,所有任务FIFO
  • newSingleThreadExecutor

    • 只有一个核心线程
    • 使用LinkedBlockingQueue,所有任务FIFO
  • newScheduledThreadPool

    • 支持定时及周期执行任务的线程池
Last Updated:
Contributors: himcs